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EE2026 (Part 1) 
 Tutorial 2 - Solutions  

 
 

 
1.  (a) ( ) ( )210 11111010250 =  (being integer, just apply the iterated division by 2 and 

take the remainder) 
 
 
(b)  
(i).  122)(11111010 −→magnitude signed  (sign is negative because MSB = 1, 
magnitude is simply expressed by the remaining bits 1111010) 
 
(ii). 500000101(11111010 − → →                  .complement )(magnitudes)1'  
Indeed, sign is negative since MSB = 1. 
Now, let us evaluate the magnitude. Being negative, the given number 11111010  
represents the 1’s complement A* of the magnitude A, by definition of 1’s complement 
representation. By definition of 1’s complement, we have AA n −−= 12* , hence the 
magnitude A is equal to *AA n −−= 12  (i.e., the magnitude is obtained from the 1’s 
complement by simply evaluating the 1’s complement of the latter). Hence, the 
magnitude results to the 1’s complement of 11111010 , which is 00000101 . 
 
(iii). 6)(00000110)(11111001)(11111010 1 −→ →→− magnitudes1's2' complement  
 
Same considerations apply here. The only difference is that AA n −= 2* , hence 

*AA n −= 2 . Again, this means that the magnitude of the 2’s complement 
representation of a negative number is simply obtained by evaluating its 2’s 
complement. 

  
  

2.  (a) (-1) + 45     
      11111111 
   + 00101101 
    100101100  →            44 

(Adding these two numbers causes a carry over into the 9th bit position, which is 
ignored in the 8-bit arithmetic system.)  
 

(b) (-128) + (-60)     
        10000000 
     + 11000100 

  01000100  →            68 
This example is particularly interesting since it considers the case of an “overflow”, i.e. 
the result is constrained to have the same number of bits (bit width) as the operands, and 
hence the result can be out of the range that is covered by the 2’s complement 
representation with 8 bits (-28-1... 28-1-1, i.e. -128...127). 
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Being -128 the minimum value that can be represented with 8-bit 2’s complement 
representation, subtracting 60 clearly leads to a result that is beyond the range, and an 
overflow occurs. 
 
Now, the question is how to detect an overflow in an addition in a computer, where 
usually the bit width of the result is the same as the operands. To answer the question, 
we first observe that the sum of a positive and a negative number in the above range is 
always within the same range. In other words, the overflow can occur only if the two 
operands have the same sign. 
When the operands have the same sign, the result should clearly have the same sign. To 
better understand, let us assume the two operands are positive (same considerations hold 
for negative numbers). As long as the result is within the correct range, its MSB in 2’s 
complement representation will be 0, being a positive number. If the result exceeds the 
maximum positive number that is within the range (i.e., 011...11), its MSB will become 
1 and the result will hence represent a negative number (which is clearly incorrect).  
 
Hence, overflow occurrence can be simply checked as follows: 
- compare the sign (i.e., MSB) of operands 

o if it is different, no overflow occurs (OVERFLOW = 0) 
o if it is the same, compare the sign (MSB) of the result 

 if the MSB of the result is the same as the MSB of the operands, no 
overflow occurred (OVERFLOW = 0) 

 otherwise, overflow was occurred, which will be signaled by raising 
OVERFLOW = 1 (i.e., the computer performs the calculations, 
providing the result, as well as the OVERFLOW signal to confirm 
the correctness of the result or not). 

 
 
3. (00100)SM  = (00100)2’s [the number is positive]  
 (10100)2’s + (00100)SM  = (10100)2’s + (00100) 2’s= (11000)2’s 

  Convert to integers and add to verify your result! 
 
 
4.   { { { {

3264
0011001001100100  

4623=  
 


